Finding Hamiltonian Cycles in Delaunay Triangulations Is NP-complete

نویسنده

  • Michael B. Dillencourt
چکیده

It is shown that it is an NP-complete problem to determine whether a Delaunay trian-gulation or an inscribable polyhedron has a Hamiltonian cycle. It is also shown that there exist nondegenerate Delaunay triangulations and simplicial, inscribable polyhedra without 2-factors. Irvine through an allocation of computer resources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabbing Line Segments with Disks: Complexity and Approximation Algorithms

Computational complexity is studied for the problem of stabbing set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line drawing of planar graph. This problem along with its relatives [3] arise in physical network security analysis for telecommunication, wireless and road networks represented by geometric graphs ...

متن کامل

Minimizing local minima in terrains with higher-order Delaunay triangulations

We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heuristics are presented to minimize the number of local minima for higher-order Delaunay triangulations, and they are compa...

متن کامل

On the Strongest Form of a Theorem of Whitney for Hamiltonian Cycles in Plane Triangulations

Tuesday, September 2 12:30–1:20 4119 Harris Hall The question whether for a given graph a hamiltonian cycle exists is NPcomplete, even when restricted to the class of plane triangulations. However, in 1931 Whitney proved a sufficient condition: each plane triangulation containing no non-facial cycle of length 3 is hamiltonian. More than 70 years later, Jackson and Yu succeeded in finding a cons...

متن کامل

Graph-Theoretical Conditions for Inscribability and Delaunay Realizability

We present new graph-theoretical conditions for polyhedra of inscribable type and Delaunay triangulations. We establish several sufficient conditions of the following general form: if a polyhedron has a sufficiently rich collection of Hamiltonian subgraphs, then it is of inscribable type. These results have several consequences: • All 4-connected polyhedra are of inscribable type. • All simplic...

متن کامل

Generating Realistic Terrains with Higher-Order Delaunay Triangulations

For hydrologic applications, terrain models should have few local minima, and drainage lines should coincide with edges. We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 64  شماره 

صفحات  -

تاریخ انتشار 1996